
1

slide 1

Slides by Vitaly Shmatikov
University of Texas

updated slightly by smo IHK

SSL/TLS

slide 2

What is SSL / TLS?

Transport Layer Security protocol, version 1.0
• De facto standard for Internet security
• “The primary goal of the TLS protocol is to provide

privacy and data integrity between two communicating
applications”

• In practice, used to protect information transmitted
between browsers and Web servers

Based on Secure Sockets Layers protocol, ver 3.0
• Same protocol design, different algorithms

Deployed in nearly every Web browser

2

slide 3

SSL / TLS in the Real World

slide 4

Application-Level Protection

application

presentation

session

transport

network

data link

physical

IP

TCP

email, Web, NFS

RPC

802.11

Protects againt application-level threats
(e.g.,server impersonation), NOT
against IP-level threats (spoofing, SYN
flood, DDoS by data flood)

3

slide 5

History of the Protocol

SSL 1.0
• Internal Netscape design, early 1994?
• Lost in the mists of time

SSL 2.0
• Published by Netscape, November 1994
• Several weaknesses

SSL 3.0
• Designed by Netscape and Paul Kocher, November 1996

TLS 1.0
• Internet standard based on SSL 3.0, January 1999
• Not interoperable with SSL 3.0

– TLS uses HMAC instead of MAC; can run on any port

• TLS 1.2 RFC 5246 august 2008

slide 6

“Request for Comments”

Network protocols are usually disseminated in the
form of an RFC
TLS version 1.0 is described in RFC 2246
• version 1.1 RFC 4346 v1.2 RFC 5346

Intended to be a self-contained definition of the
protocol
• Describes the protocol in sufficient detail for readers

who will be implementing it and those who will be
doing protocol analysis

• Mixture of informal prose and pseudo-code

4

slide 7

Evolution of the SSL/TLS RFC

0

10

20

30

40

50

60

70

80

SSL 2.0 SSL 3.0 TLS 1.0

Page count

slide 8

TLS Basics

TLS consists of two protocols
• Familiar pattern for key exchange protocols

Handshake protocol
• Use public-key cryptography to establish a shared

secret key between the client and the server

Record protocol
• Use the secret key established in the handshake

protocol to protect communication between the client
and the server

We will focus on the handshake protocol

5

slide 9

TLS Handshake Protocol

Two parties: client and server
Negotiate version of the protocol and the set of
cryptographic algorithms to be used
• Interoperability between different implementations of

the protocol

Authenticate client and server (optional)
• Use digital certificates to learn each other’s public keys

and verify each other’s identity

Use public keys to establish a shared secret

slide 10

Handshake Protocol Structure

C

ClientHello

ServerHello,
[Certificate],
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone

S[Certificate],
ClientKeyExchange,
[CertificateVerify]

Finished

switch to negotiated cipher

Finished
switch to negotiated cipher

Record of all sent and
received handshake messages

6

slide 11

ClientHello

C

ClientHello

S

Client announces (in plaintext):
• Protocol version he is running
• Cryptographic algorithms he supports

slide 12

struct {
ProtocolVersion client_version;
Random random;
SessionID session_id;
CipherSuite cipher_suites;
CompressionMethod compression_methods;

} ClientHello

ClientHello (RFC)

Highest version of the protocol
supported by the client

Session id (if the client wants to
resume an old session)

Set of cryptographic algorithms
supported by the client (e.g.,

RSA or Diffie-Hellman)

7

slide 13

ServerHello

C

C, Versionc, suitec, Nc

ServerHello

S
Server responds (in plaintext) with:
• Highest protocol version supported by

both client and server
• Strongest cryptographic suite selected

from those offered by the client

slide 14

ServerKeyExchange

C

Versions, suites, Ns,
ServerKeyExchange

SServer sends his public-key certificate
containing either his RSA, or
his Diffie-Hellman public key
(depending on chosen crypto suite)

C, Versionc, suitec, Nc

8

slide 15

ClientKeyExchange

C

Versions, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc, suitec, Nc

ClientKeyExchange

Client generates some secret key material
and sends it to the server encrypted with
the server’s public key (if using RSA)

slide 16

struct {
select (KeyExchangeAlgorithm) {

case rsa: EncryptedPreMasterSecret;
case diffie_hellman: ClientDiffieHellmanPublic;

} exchange_keys
} ClientKeyExchange

struct {
ProtocolVersion client_version;
opaque random[46];

} PreMasterSecret

ClientKeyExchange (RFC)

Random bits from which
symmetric keys will be derived
(by hashing them with nonces)

9

slide 17

“Core” SSL 3.0 Handshake

C

Versions=3.0, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Secretc}Ks

switch to key derived
from secretc, Nc, Ns

If the protocol is correct, C and S share
some secret key material (secretc) at this point

switch to key derived
from secretc, Nc, Ns

slide 18

Version Rollback Attack

C

Versions=2.0, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc=2.0, suitec, Nc

{Secretc}Ks

C and S end up communicating using SSL 2.0
(weaker earlier version of the protocol that

does not include “Finished” messages)

Server is fooled into thinking he
is communicating with a client
who supports only SSL 2.0

10

slide 19

SSL 2.0 Weaknesses (Fixed in 3.0)

Cipher suite preferences are not authenticated
• “Cipher suite rollback” attack is possible

Weak MAC construction
SSL 2.0 uses padding when computing MAC in
block cipher modes, but padding length field is
not authenticated
• Attacker can delete bytes from the end of messages

MAC hash uses only 40 bits in export mode
No support for certificate chains or non-RSA
algorithms, no handshake while session is open

slide 20

“Chosen-Protocol” Attacks

Why do people release new versions of security
protocols? Because the old version got broken!
New version must be backward-compatible
• Not everybody upgrades right away

Attacker can fool someone into using the old,
broken version and exploit known vulnerability
• Similar: fool victim into using weak crypto algorithms

Defense is hard: must authenticate version early
Many protocols had “version rollback” attacks
• SSL, SSH, GSM (cell phones)

11

slide 21

Version Check in SSL 3.0

C

Versions=3.0, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Versionc,Secretc}Ks

If the protocol is correct, C and S share
some secret key material secretc at this point

“Embed” version
number into secret

Check that received version is equal to
the version in ClientHello

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

slide 22

SSL/TLS Record Protection

Use symmetric keys
established in handshake protocol

